DOMESTIC STORAGE AND SOLAR POWER A BIG-DATA BASED OPTIMIZATION OF THE ELECTRICITY BILL

A CRASH COURSE ON THE SPANISH ELECTRICITY BILL

DETALLE DE LA FACTURA

LUZ
Importe por potencia contratada:
$4,6 \mathrm{~kW} \times 0,121292$ Eur/ $\mathrm{kW} \times 7$ días \qquad .3,91 € $4,6 \mathrm{~kW} \times 0,121292$ Eur/kW x 42 días \qquad 23,43€
$4,6 \mathrm{~kW} \times 0,120961$ Eur/kW x 17 días 9,46€
En dicho importe, facturación por peaje de acceso:
$4,6 \mathrm{~kW} \times 38,043426 \mathrm{Eur} / \mathrm{kW}$ y año $\times(7 / 365)$ días $4,6 \mathrm{~kW} \times 38,043426$ Eur/kW y año $\times(42 / 365)$ días $4,6 \mathrm{~kW} \times 38,043426 \mathrm{Eur} / \mathrm{kW}$ y año $\times(17 / 366)$ días

3,36 € 20,14 €
8,13€

Importe por energía consumida
235 kWh x 0,135247 Eur/kWh

$82 \mathrm{kWh} \times 0,133681$ Eur/kWh 10,96 €
$\begin{array}{lr}\text { En dicho importe, su facturación por peaje de acceso ha sido: } \\ 33 \mathrm{kWh} \times 0,044027 \mathrm{Eur} / \mathrm{kWh} & 1,45 € \\ 202 \mathrm{kWh} \times 0,044027 \mathrm{Eur} / \mathrm{kWh} & 8,89 € \\ 82 \mathrm{kWh} \times 0,044027 \mathrm{Eur} / \mathrm{kWh} & 3,61 €\end{array}$
42,74 €

SUBTOTAL

79,54 €
OTROS CONCEPTOS
DESCUENTOS (5,00) \% x 36,80 \qquad $-1,84 €$ \% DTO. PROMOCIONAL 5,00\%
\% Dto. Promo. s/ potencia 36,8 Eurx -5% \qquad $-1,84$
Impuesto electricidad ($75,86 \times 5,11269632 \%$)
Alquiler equipos de medida y control (66 días $\times 0,026666$ Eur/día) . 1,76€

SUBTOTAL	$1,96 €$	
Importe total	$\mathbf{8 1 , 5 0 €}$	
IVA NORMAL (21%)	$21 \% s / 81,50$	$17,12 €$
TOTAL IMPORTE FACTURA	$\mathbf{9 8 , 6 2 €}$	

DESTINO DEL IMPORTE DE LA FACTURA

El destino del importe de su

 factura, 98,62 euros, es el siguiente:| Impuestos aplicados |
| :--- |
| Coste de producción de electricidad |
| Costes Regulados |

- Incentivos a las energías renovables, cogeneración y residuos 19,59€
- Coste de redes de transporte y distribución

19,94 €

- Otros costes regulados (incluida la anualidad del déficit)

12,54€
A los importes indicados en el diagrama debe añadirse, en su caso, el importe del alquiler de los equipos de medida y control así como los conceptos no energéticos.

WITNESSING A REVOLUTION

Elon Musk thinks Tesla can sell batteries much faster than cars

CincoDías

DOMNCO 18 DE DICIEMARE DE ZOAS

| Inicio Mercados Empresas Economia Tecnologla |
| :---: | :---: | :---: | :---: |
| ESTA PASANDO EEX $35 \quad$ Celenderio laboral a017 \quad Buscador Loteria Neavidad |

¿Cómo funciona la nueva tarifa eléctrica por horas？
Entra en vigor el 1 de julio，aunque las elécticas tienen hasta octubre para adantarse

（PVTECH

PV－Tech每日光伏新闻

Report：Commercial solar hits grid parity in Spain，Germany and Italy

By John Parnell Mar 26， 2014 1：49 PM GMT $\quad \Omega$

Operational cost optimization for renewable energy microgrids in Mediterranean climate

Imene Yahyaoui
Electrical Engineering Department Federal University of Espiritu Santo
imene．yahyaoui＠ufes．br

Rachid Ghraizi Energy Department
INDRA SISTEMAS S．A
Spain
rghraizi＠indra．es rghraizi＠indra．es

Fernando Tadeo Industrial Engineering School Industrial Engineering School
University of Valladolid Spain fernando＠autom．uva．es

Abstract－This paper is concerned with the energy management of a micro－grid composed of photovoltaic／wind
diesel sources used to supply household loads．The control strategy manages the power flow between the power sources and the loads，which ensures the minimization of the installation operating cost，the safe operating for the battery bank while minimizing the use of the diesel engine．The strategy is tested using measured data of some climatic parameters of a
Mediterranean area（Northern Tunisia），showing its efficiency in Mediterranean area（Northern Tunisia），showing its efficiency in
power supply and a safe operation for the battery bank，by considering the powers $P_{p v}, P_{w}, P_{\text {bat }}$ and P_{G} ，generated by the photovoltaic panels，the wind turbine，the battery bank and the diesel engine，respectively（Fig．2）．
In fact，the strategy consists in evaluating，at each sample time，the optimum power sources combination，thus minimizing the power production costs and supplying the loads continuously，and guarantecing a safe operation for the

IS IT POSSIBLETO LIVE OFF-GRID ?

Operational cost optimization for renewable energy microgrids in Mediterranean climate

> Imene Yahyaoui Electrical Engineering Department Federal University of Espiritu Santo Brazil imene.yahyaoui@ufes.br

$$
\begin{gathered}
\text { Rachid Ghraizi } \\
\text { Energy Department } \\
\text { INDRA SISTEMAS S.A } \\
\text { Spain } \\
\text { rghraizi@indra.es }
\end{gathered}
$$

Fernando Tadeo
Industrial Engineering School
University of Valladolid
University of Valladolid
fernando@aintomua

Abstract-This paper is concerned with the energy management of a micro-grid composed of photovoltaic/ wind
diesel sources used to supply houschold loads. The control diesel sources used to supply houschold loads. The control
strategy manages the power flow between the power sources and strategy manages the power flow between the power sources and
the loads, which ensures the minimization of the installation the loads, which ensures the minimization of the installation
operating cost, the safe operating for the battery bank while minimizing the use of the diesel engine. The strategy is tested using measured data of some climatic parameters of a Mediterranean area (Northern Tunisia), showing its efficiency in
fulfilling the fixed objectives and respecting the criteria of the control strategy.
Keywords-renewable energies; diesel engine; cos optimization; microgrids; autonomy
L. Introduction

Hybrid power systems with renewable energy and diese engine resources showed significant improvement in the power system's emissions reduction, reliability, efficiency,
power supply and a safe operation for the battery bank, by considering the powers $P_{p}, P_{w}, P_{\text {wat }}$ and P_{G}, generated by the photovoltaic panels, the wind turbine, the battery bank and the diesel engine, respectively (Fig. 2)
In fact, the strategy consists in evaluating, at each sample time, the optimum power sources combination, thus minimizing the power production costs and supplying the loads continuously, and guarantecing a safe operation for the
battery bank (Fig. 3). Indeed, the system is composed of five battery bank (Fig. 3). Indeed, the system is composed of fiv components that reflect the fives energy sources: it described as follows:
(1)

$\left.\left.\begin{array}{l|l}v_{4}(t) \\ v_{s}(t)\end{array}\right] \begin{array}{l}P_{G}(t) \\ P_{t}(t)\end{array}\right]$

IS IT POSSIBLE TO LIVE OFF-GRID ?

- The estimation of the solar radiation is an complex problem
* Global insolation (Liu \& Jordan model):

$$
H(t, d)=\frac{\pi}{24} \frac{\cos w-\cos w_{s}}{\sin w_{s}-w_{s} \cos w_{s}}\left(0.409+0.501 \sin \left(w_{s}-\frac{\pi}{3}\right)+\left(0.6609+0.4767 \cos \left(w_{s}-\frac{\pi}{3}\right)\right) \cos w\right) \bar{H}
$$

* Diffused solar radiation

$$
H_{d}(t, d)=\frac{\pi}{24} \frac{\cos w-\cos w_{s}}{\sin w_{s}-w_{s} \cos w_{s}} \overline{H_{d}}
$$

* Solar radiation on a tilted panel

$$
G(t, d)=R_{b}^{\prime} H_{b}(t, d)+\left(\frac{1+\cos \beta}{2}\right) H_{d}(t, d)+\rho\left(\frac{1-\cos \beta}{2}\right) H(t, d)
$$

$$
H_{b}(t, d)=H(t, d)-H_{d}(t, d)
$$

IS IT POSSIBLE TO LIVE OFF-GRID ?

- ... and also the problem of estimating the panel's yield.

The model used for sizing the PVP is based on the photovoltaic module yield:

Photovoltaic yield

$$
\eta_{p v}(t)=\eta_{r}\left(1-\beta_{p v}\left(T_{c}(t)-T_{r e f}\right)\right)
$$

Cell temperature

$$
T_{c}(t)=T_{a}(t)+G(t, d) \frac{N O C T-T_{r e f}}{800}
$$

Photovoltaic power

$$
P_{p v}(t)=S G(t, d) \eta_{p v}(t)
$$

η_{r} : panel yield at the reference temperature $T_{\text {ref }}$
$\beta_{p v}$: temperature coefficient for the panel yield
$T_{a}:$ ambient temperature
NOCT : Normal Operating Cell Temperature
S : panel surface

DOMESTIC STORAGE:A GOOD OPTIONALREADY

- The cost of storing energy in a Lithium battery is reported to be around I5 cts/kWh

Source: B. Nykvist and M. Nilsson, Rapidly falling costs of battery packs for electric vehicles, Nature Climate Change, 2015

HAS SOLAR POWER REACHED GRID-PARITY?

"Unsubsidized rooftop solar electricity costs between $\$ 0.08-\$ 0.13 / \mathrm{kWh}, 30$ 40% below retail price of electricity in many markets globally". Deutsche Bank report: Solar grid parity in a low oil price era, March 2015

Countries with regions of

THE TECHNOLOGY IS ALREADY HERE...

Intelligent system: many degrees of freedom!

BIG DATA AND WHERETO FIND THEM

Endesa Dataset

Hourly Prices
(regulated tariff)

Data from Red Eléctrica Española

Solar
Radiation Data

Data from
OpenSolarDB.org

THE PVPC:A FIRST KEY TO INCREASE THE EFFICIENCY

Data from Red Eléctrica Española

FIRST (SIMPLER) APPROACH: USE DOMESTIC ENERGY STORAGE

- Key idea: per-customer optimization of the overall cost (power-term + energy term) using batteries.
- We aim at obtaining the energy at cheap hours and spend them at the expensive ones.

FIRST (SIMPLER) APPROACH: USE DOMESTIC ENERGY STORAGE

Elements:

- $\mathrm{e}_{d}{ }^{n}$ is the energy consumed at day d, hour n, and $E_{d}=\Sigma_{n} \mathrm{e}_{d}{ }^{n}$
- P is the contracted power term.
- $c_{d}{ }^{n}$ is the price of the kWh from the grid at day d , hour n (assumed sorted)
- c_{p} is the price of each kW in the power term
- γ is the round-trip factor of the battery
- h_{d} is the number of hours it takes to charge the battery at a speed not exceeding P at day d
We perform a grid-search over the available values of P that minimizes:

$$
\sum_{d}[\underbrace{\sum_{n=1}^{h_{d}-1} P c_{d}^{n}+\left(\gamma E_{d} \bmod P\right) c_{d}^{h_{d}}}_{\text {Energy-term }}+\underbrace{P c_{P}}_{\text {Power-term }}]
$$

DOMESTIC ENERGY STORAGE

- The total cost (power term + energy term) is re-evaluated for each user after the optimal P is obtained.
- What is the saving per kWh that makes the installation profitable?

As a reference, we use the specifications of the Tesla Powerwall, and assume an initial cost of $400 €$ per kWh , a 80% efficiency (which incorporates the round-trip loss, the inverter and the degradation along the lifetime of the battery) and an operational life of 5000 cycles I.

- In conclusion, a saving of $\mathbf{I 5} \mathbf{€} / \mathbf{k W h}$ returns the investment.
'Christopher Helman,"Why Tesla's Powerwall Is Just Another Toy For Rich Green People",Forbes, May Ist, 2015.

DOMESTIC ENERGY STORAGE

Results

A good amount of users can save more than $15 \mathrm{cts} / \mathrm{kWh}$!

LEVERAGE OF THE EFFICIENCY WITH SOLAR PANELS

- Now, we consider that we have a PV installation in addition to the batteries.
- In this case there are many degrees of freedom:
- Each kWh obtained from the PV panels can be I) spent, 2) used to charge the batteries, or 3) both.
- Each kWh consumed by the house can be obtained from I) the grid, 2) the batteries, or 3) directly from the PV panels.
- The batteries can be charge either I) from the grid or 2) from the PV panels.

LEVERAGE OF THE EFFICIENCY WITH SOLAR PANELS

Example: 24 h cycle in a house equipped with both batteries and PV

LEVERAGE OF THE EFFICIENCY WITH SOLAR PANELS

New elements:

- P_{S} is the PV power installed.
- B is the storage capacity (battery)
- C_{S} is the cost of each kW of PV power installed.
- C_{B} is the cost of storing each kWh of electricity.
- $S_{d}=\alpha(d) P_{S}$ is the solar energy obtained from the panels along day d,
- G_{d} is the energy stored in the battery along day d

With this elements, we can evaluate the best-case saving (assume that both the solar and the stored energy can be substracted from the most expensive components of the bill).
This time, we do not optimize P since we are allowed to consume directly from the grid.

LEVERAGE OFTHE EFFICIENCY WITH SOLAR PANELS

For each user, we jointly optimize:
I. The PV power installed
2. The storage capacity

$$
\begin{aligned}
\operatorname{minimize}_{P_{S}, B} & \sum_{d}[\underbrace{P_{S} C_{S} \alpha(d)}_{\text {Cost of solar power }}+\underbrace{C_{B} G_{d}}_{\text {Cost of batteries }} \\
+ & \underbrace{}_{\sum_{n=1}^{\sum_{n}} c_{d}^{n} \frac{G_{d}}{5}}+\underbrace{\min _{n=1} \sum_{n=1}^{24} r_{d}^{n} c_{d}^{n}}_{\underbrace{}_{\mathbf{r}}}] \\
& \operatorname{Cost~of~energy~to~store~} \quad \text { Cost of non-stored energy } \\
\text { subject to } \quad G_{d}= & \min \left\{B, \gamma E_{d}-S_{d}\right\} \\
R_{d}= & \min \left\{0, E_{d}-S_{d}-G_{d}\right\} \\
R_{d}= & \sum_{n=1}^{24} r_{d}^{n}
\end{aligned}
$$

LEVERAGE OF THE EFFICIENCY WITH SOLAR PANELS

Results: Overall savings of the 44.000 users during an average period of 330 days

Saving are in the range 4-6 M€! (100-I50 € per user and year)

LEVERAGE OF THE EFFICIENCY WITH SOLAR PANELS

Results: Structure of the Domestic Pool

- The role of the batteries is marginal unless they are really cheap.
- The optimal choice is always to keep connected to the grid!

LEVERAGE OF THE EFFICIENCY WITH SOLAR PANELS

A more realistic scenario considers the vector of hourly values of solar radiation.

- \boldsymbol{r} is the vector of 24 hourly values of energy obtained from the grid.
- \boldsymbol{b} is the vector of energy values charged to or discharged from the battery.
- \mathbf{e} is the vector with the hourly load of the house.
- \boldsymbol{s} is the vector of energy values obtained from the PV.
- P_{C} and P_{B} are the maximum charge and discharge speeds

Then, $\mathbf{e} \boldsymbol{+} \boldsymbol{b}=\boldsymbol{r} \boldsymbol{+}$

LEVERAGE OF THE EFFICIENCY WITH SOLAR PANELS

- A more realistic scenario considers the vector of hourly values of solar radiation.
- For each P_{S} and B, we solve the optimization problem:

$$
\begin{aligned}
\underset{\mathbf{r}}{\operatorname{minimize}} & \mathbf{c}^{T} \mathbf{r} \\
\text { subject to: } & \mathbf{b}=\mathbf{r}-\mathbf{e}+\mathbf{s} \\
& g_{n} \geq 0 \\
& \sum_{n=1}^{N} b_{n} \leq B, \quad N=1, \ldots, 23 \\
& \sum_{n=1}^{N} b_{n} \geq 0, \quad N=1, \ldots, 23 \\
& \sum_{n=1}^{24} b_{n}=0 \\
& -P_{B} \leq b_{n} \leq P_{C}
\end{aligned}
$$

IMPLEMENTATION IN SPARK

- The cost of the 32 million daily data is computed in parallel (map() method)
- In a grid of values of P
- In a grid of values of $\left(P_{S}, B\right)$.
- Then, the grid of results for each user is compiled by a reduceByKey() method.
- Results are collected by a collectAsMap() method.
- The optimal value of P^{*} or $\left(P_{s}^{*}, B^{*}\right)$ is then obtained for each user.

IMPLEMENTATION IN SPARK

CONCLUSIONS

- It is possible to evaluate the impact of adopting alternative energy technologies (batteries + PV panels).
- The utility companies (retail electricity companies) have plenty of data to design appropriate products.
- Accurate solar radiation data are necessary for a better estimation.
- The utopia of disconnecting from the grid is not advised by the numbers: it is better to keep connected and obtain cheap kWhs from it.

THANKS!

