
- 1 -

Métodos Policy Gradients para

Deep Reinforcement Learning

Álvaro Barbero Jiménez

12 de julio de 2019

- 3 -

Reinforcement
learning
formalism

𝒔𝒕 ∈ ℝ𝐷: state time 𝑡, which might be a terminal state (process stops)

𝒓𝒕 ∈ ℝ: reward obtained at time 𝑡

𝒑𝒔 𝒔′ 𝒔, 𝒂 ∈ ℝ: state transition model, probability of jumping to state 𝑠′,
given current state 𝑠 and some action 𝑎

𝒑𝒓 𝒓 𝒔, 𝒂 ∈ ℝ: reward model, probability of obtaing reward 𝑟 given
current state 𝑠 and some action 𝑎

𝒂𝒕 ∈ ℝ𝐴: action performed by the agent at time 𝑡

Objective: find an agent or policy function 𝜋(𝑎|𝑠) (probability
of performing action 𝑎 in state 𝑠) that maximizes the
expected rewards:

A reinforcement learning problem can be
stated in terms of a Markov decision process,
defined through:

max
𝜋

𝔼𝑝𝑠,𝑝𝑟 𝜋 𝑎0 𝑠0 𝑝𝑠 𝑠1 𝑠0, 𝑎0 𝑝𝑟 𝑟1 𝑠0, 𝑎0 𝑟1 + 𝜋 𝑎1 𝑠1 𝑝𝑠 𝑠2 𝑠1, 𝑎1 𝑝𝑟 𝑟2 𝑠1, 𝑎1 𝑟2 + 𝜋 𝑎2 𝑠2 𝑝𝑠 𝑠3 𝑠2, 𝑎2 𝑝𝑟 𝑟3 𝑠2, 𝑎2 𝑟3+ ...

Wikipedia - Markov Decision Process

https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg

- 4 -

Example:
Frozen
Lake

State: current tile in the lake.

Terminal states: house and
holes

Actions: move up, down, left or
right.

Probabilistic transition model:
random perturbations in chosen
action (slippery ice) with unknown
distribution.

Deterministic reward model: +10 +1 -10

- 5 -

Classic
methods

Assuming the state transition model 𝒑𝒔 𝒔′ 𝒔, 𝒂 and the reward model
𝒑𝒓 𝒔′ 𝒔, 𝒂 are known, the optimal policy 𝜋∗(𝑎|𝑠) can be found by
using dynamic programming methods: Value Iteration and Policy
Iteration.

Essentially, find best 1-step policy for all states, then iterate finding the best n+1-steps
policy from the n-steps policy.

However, in real world problems usually 𝒑𝒔 and 𝒑𝒓 are unknown.
There are mainly two options to overcome this:

- Model-based methods: learn a model of (𝒑𝒔, 𝒑𝒓), e.g. by
Montecarlo sampling, then apply the methods above.

- Model-free methods: learn the policy 𝜋 directly.

! In some problems where the state space is very large, or
continuous, or too complex, it is infeasible to apply model-based
methods.

Today we will present Policy Gradients Methods, a class of model-free
methods.

- 6 -

Policy
gradients
methods

To learn the policy 𝜋 directly we will need a reformulation.

Let us define:

Trajectory 𝜏 = 𝑠0, 𝑎0, 𝑟1 , 𝑠1, 𝑎1, 𝑟2 , …

Total reward of a trajectory 𝑟 𝜏 = σ𝑟𝑡∈𝜏 𝑟𝑡

Differentiable policy 𝜋𝜃(𝑎|𝑠) with parameters 𝜃

Then we can measure the quality of a policy by the expected rewards
of the trajectories produced by that policy

𝐽 𝜃 = 𝔼𝜏∼𝑝(𝜏;𝜃) 𝑟(𝜏) = න
𝜏

𝑟 𝜏 𝑝 𝜏; 𝜃 𝑑𝜏

Now, to find the best policy we can follow a simple optimization
procedure:

• Start with a random policy

• Update policy parameters through gradient ascent

𝛻𝜃 𝐽(𝜃) = න
𝜏

𝑟 𝜏 𝛻𝜃 𝑝(𝜏; 𝜃) 𝑑𝜏

!!! The integral in this gradient is intractable!

- 7 -

Policy
gradients
methods –
Computing the
gradient

𝛻𝜃 𝐽(𝜃) = න
𝜏

𝑟 𝜏 𝛻𝜃 𝑝(𝜏; 𝜃) 𝑑𝜏

To compute this gradient we use a logarithm reformulation

𝛻𝜃𝑝 𝜏; 𝜃 = 𝑝 𝜏; 𝜃
𝛻𝜃𝑝 𝜏; 𝜃

𝑝 𝜏; 𝜃
= 𝑝 𝜏; 𝜃 𝛻𝜃log 𝑝(𝜏; 𝜃)

and injecting this back

𝛻𝜃 𝐽 𝜃 = න
𝜏

𝑟 𝜏 𝑝 𝜏; 𝜃 𝛻𝜃log 𝑝(𝜏; 𝜃) 𝑑𝜏 = 𝔼𝜏∼𝑝(𝜏;𝜃) 𝑟(𝜏)𝛻𝜃log 𝑝(𝜏; 𝜃)

This expectation can be approximated through a Monte Carlo
method, i.e. by taking sample trajectories from the policy

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

𝑟(𝜏𝑘)𝛻𝜃log 𝑝(𝜏𝑘; 𝜃)

The only remaining problem is how to compute 𝛻𝜃log 𝑝(𝜏𝑘; 𝜃).

- 8 -

Policy
gradients
methods –
Computing the
gradient

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

𝑟(𝜏𝑘)𝛻𝜃log 𝑝(𝜏𝑘; 𝜃)

Since we are in a Markov Decision Process, the probability of a trajectory is

𝑝 𝜏; 𝜃 =ෑ

𝑡

𝑝𝑠 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

log 𝑝 𝜏; 𝜃 =෍

𝑡

(log 𝑝𝑠 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + log 𝜋𝜃 𝑎𝑡 𝑠𝑡)

Key observation: even if the transition model 𝑝𝑠 is unknown, it does not
depend on 𝜃!

𝛻𝜃 log 𝑝 𝜏; 𝜃 =෍

𝑡

(𝛻𝜃log 𝑝𝑠 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + 𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡)

Therefore the gradient of the reinforcement learning objective is simply

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

𝑟 𝜏𝑘 ෍

𝑡

𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

- 9 -

Policy
gradients
methods –
REINFORCE
algorithm

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

𝑟 𝜏𝑘 ෍

𝑡

𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

Implementing this gradient calculation is easy: use a neural network
to implement 𝜋𝜃(𝑎|𝑠), with one output neuron per action and
softmax activation. Then the training loop is:

- Sample 𝑘 trajectories from the environment under the current
policy 𝜋𝜃(𝑎|𝑠). Store trajectories as lists of steps
[𝑠𝑘𝑡 , 𝑎𝑘𝑡 , 𝑟𝑘𝑡 , 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡].

- Compute 𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡 for each timestep. This is trivial using
an automated differentiation tool such as TensorFlow or PyTorch.

- Update policy parameters 𝜃 using the gradient above.

𝑠

D
e

n
se

D
e

n
se

S
o

ft
m

a
x 𝜋𝜃(𝑎

1|𝑠)

𝜋𝜃(𝑎
3|𝑠)

𝜋𝜃(𝑎
2|𝑠)…

- 10 -

Policy
Gradients
intuition

Sample many trajectories, then equally promote all the actions
𝜋𝜃 𝑎 𝑠 performed in high reward trajectories, and equally demotivate all
the actions 𝜋𝜃 𝑎 𝑠 performed in low reward trajectories. Eventually we
converge to a local maximum where the actions that are consistently useful
among many trajectories should be performed with high probability.

𝜃 +=
1

𝑘
෍

𝑘

𝑟 𝜏𝑘 ෍

𝑡

𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

+11 -10 -9

+12 -9 +11

- 12 -

Evolution of
Policy
Gradients
algorithms

Policy
Gradients

Actor-
Critic

Advantage
Actor-
Critic

Asynchronous
Advantage
Actor-Critic

Trust Region
Policy

Optimization

Proximal
Policy

Optimization

IMPALA

Asynchronous
Proximal

Policy
Optimization

- 13 -

Better
credit
assignment

The update

𝜃 +=
1

𝑘
෍

𝑘

𝑟 𝜏𝑘 ෍

𝑡

𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

reinforces all actions in the trajectory by the total
trajectory reward 𝑟 𝜏𝑘 .

However, most actions may have no real impact on the
total reward, while a few actions might be key. It might
take many samples for the policy to learn which are those.

It would be useful to implement some
intuition into what actions are significant.
An intelligent player is reasonably good at
estimating the probable outcome of an
in-progress trajectory.

- 14 -

Actor-Critic
methods

The Actor model defines the
policy 𝜋𝜃 𝑎 𝑠 , and learns to
improve the expected rewards.

Same as the usual Policy
Gradients policy.

The Critic model defines some
value function 𝑄𝜙(𝑠, 𝑎, 𝜋) estimating
the expected reward to be obtained
when applying the policy 𝜋 after
using action 𝑎 in state 𝑠. Improves
its estimates through training.

- 15 -

Critic
example

+10

-10 +6

+4

+10 +1 -10

- 16 -

Actor-Critic
methods –
Value function

The ideal value function 𝑄(𝑠, 𝑎, 𝜋) is the total expected
reward to be obtained from state 𝑠, after applying action 𝑎,
until the trajectory finishes.

𝑄 𝑠, 𝑎, 𝜋 = 𝔼𝜏∼𝑝(𝜏;𝜋) ෍

𝑡≥0,𝑟∈𝜏

𝛾𝑡𝑟𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎

with 𝛾 ∈ (0,1) a discount factor to give less weight to
rewards in the far future.

Learning this is posible through a Temporal Difference (TD)
error strategy: in the optimum the following must hold:

𝑄𝜙 𝑠𝑡 , 𝑎𝑡, 𝜋 = 𝑟𝑡 + 𝛾𝑄𝜙 𝑠𝑡+1, 𝑎𝑡+1, 𝜋

So we train the network to reduce the misalignments
observed in 𝑄 in the sampled trajectories

𝜏 = 𝑠0, 𝑎0, 𝑟1 , 𝑠1, 𝑎1, 𝑟2 , …

- 17 -

Temporal
Different
learning
example

𝑄𝜙() = 0 + 𝛾𝑄𝜙()

𝑄𝜙() = +1 + 𝛾𝑄𝜙()

𝑄𝜙() = −10 + 𝛾𝑄𝜙()

- 19 -

Actor-Critic
methods –
Learning from
the Critic

Now, we can improve the function the policy is optimizing by making
use of the Critic. Instead of the vanilla Policy Gradients equation

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

𝑟 𝜏𝑘 ෍

𝑡

𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

we will weigh each action by the Critic value function

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

෍

𝑡

𝑄 𝑠𝑘𝑡 , 𝑎𝑘𝑡, 𝜋 𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

In this way we motivate policy decisions that will lead to high rewards
in the future, while demotivating decisions that will lead to negative
rewards.

 easier parallelization
Also, we can learn without
requiring full trajectories!

- 21 -

Evolution of
Policy
Gradients
algorithms

Policy
Gradients

Actor-
Critic

Advantage
Actor-
Critic

Asynchronous
Advantage
Actor-Critic

Trust Region
Policy

Optimization

Proximal
Policy

Optimization

IMPALA

Asynchronous
Proximal

Policy
Optimization

- 22 -

Baseline
rewards

Note that even when using a Critic there is a fundamental
problem when working in environments without negative rewards
(𝑄 𝑠, 𝑎, 𝜋 ≥ 0)

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

෍

𝑡

𝑄 𝑠𝑘𝑡, 𝑎𝑘𝑡, 𝜋 𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

The algorithm will always try to increase the probability of every
decision taken (each with different weights), but won’t explicitly
demotivate any action.

This is sometimes fixed by substracting a baseline 𝑏

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

෍

𝑡

(𝑄 𝑠𝑘𝑡 , 𝑎𝑘𝑡, 𝜋 − 𝑏)𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

as 𝑏 we can use the average reward, thus promoting actions with
over-average rewards, while demotivaing actions below-par.

- 23 -

Advantage
function –
Expectations
VS Reality

Better than using the average as baseline, we would like to
promote actions that are advantageous, in the sense that they
produce better rewards than we expected. We define the
Advantage 𝐴𝜙(𝑠, 𝑎) as kind of Temporal Difference error:

𝐴𝜙 𝑠𝑡 , 𝑎𝑡, 𝜋 = 𝑟𝑡 + 𝛾𝑉𝜙 𝑠𝑡+1, 𝜋 − 𝑉𝜙(𝑠𝑡 , 𝜋)

with 𝑉𝜙(𝑠, 𝜋) a modified Critic that accounts for the expected
rewards when applying policy 𝜋 from state 𝑠 on.

𝑉 𝑠, 𝜋 = 𝔼𝜏∼𝑝(𝜏;𝜋) ෍

𝑡≥0,𝑟∈𝜏

𝛾𝑡𝑟𝑡 |𝑠0 = 𝑠

When 𝐴𝜙 𝑠𝑡 , 𝑎𝑡, 𝜋 ≠ 0 the Critic still has not yet learned the
implications of doing 𝑎𝑡 at 𝑠𝑡, and if 𝐴𝜙 𝑠𝑡 , 𝑎𝑡, 𝜋 > 0 then this is
an unexplored and rewarding action. We want to promote that
in the policy!

- 24 -

Advantage
function -
intuition

𝑠𝑡 = 𝑠𝑡+1 =𝑎𝑡

Do that
more!

𝑠𝑡 = 𝑠𝑡+1 =𝑎𝑡

Do that
less!

- 25 -

Learning
with
Advantages

The Actor (policy) can learn from a Critic based on
advantages, as

𝛻𝜃 𝐽 𝜃 ≃
1

𝑘
෍

𝑘

෍

𝑡

𝐴 𝑠𝑘𝑡, 𝑎𝑘𝑡, 𝜋 𝛻𝜃 log 𝜋𝜃 𝑎𝑘𝑡 𝑠𝑘𝑡

and the Critic can learn again by minimizing the Temporal
Difference error, that is, the Advantages

𝛻𝜙
1

2
𝐴 𝑠𝑘𝑡 , 𝑎𝑘𝑡, 𝜋 2

2

= 𝛻𝜙
1

2
𝑟𝑘𝑡 + 𝛾 𝑉෡𝜙 𝑠𝑘𝑡+1, 𝜋 − 𝑉𝜙 𝑠𝑘𝑡 , 𝜋

2

2

= − 𝑟𝑘𝑡 + 𝛾 𝑉෡𝜙 𝑠𝑘𝑡+1, 𝜋 − 𝑉𝜙 𝑠𝑘𝑡 , 𝜋 𝛻𝜙 𝑉𝜙(𝑠𝑘𝑡 , 𝜋)

- 27 -

Evolution of
Policy
Gradients
algorithms

Policy
Gradients

Actor-
Critic

Advantage
Actor-
Critic

Asynchronous
Advantage
Actor-Critic

Trust Region
Policy

Optimization

Proximal
Policy

Optimization

IMPALA

Asynchronous
Proximal

Policy
Optimization

- 28 -

Asynchronous
Advantage
Actor-

Critic (A3C)
loop

Worker 1

1. Pull global (𝜃, 𝜙)
2. Sample a trajectory segment of length 𝑇 under the current local policy 𝜋𝜃
3. Estimate Actor and Critic gradients using A2C equations
4. Update global parameters with gradients

(𝜃, 𝜙)

𝛻

Worker 2

1. Pull global (𝜃, 𝜙)
2. Sample a trajectory segment of length 𝑇 under the current local policy 𝜋𝜃
3. Estimate Actor and Critic gradients using A2C equations
4. Update global parameters with gradients

Worker n

1. Pull global (𝜃, 𝜙)
2. Sample a trajectory segment of length 𝑇 under the current local policy 𝜋𝜃
3. Estimate Actor and Critic gradients using A2C equations
4. Update global parameters with gradients

…

(𝜃, 𝜙)

𝛻

(𝜃, 𝜙)

𝛻

Global
parameters

(𝜃, 𝜙)

- 29 -

Evolution of
Policy
Gradients
algorithms

Policy
Gradients

Actor-
Critic

Advantage
Actor-
Critic

Asynchronous
Advantage
Actor-Critic

Trust Region
Policy

Optimization

Proximal
Policy

Optimization

IMPALA

Asynchronous
Proximal

Policy
Optimization

- 30 -

Sample
efficiency

A significant problem with all algorithms seen so far
is sample efficiency. Each sample taken from the
environment is only used once to compute a
gradient, then it is discarded.

But in supervised learning it is quite common to
perform several passes (epochs) over the training
data. That is more efficient, why don’t do it here?

OVERFITTING

We are only sampling a few trajectories (or segments) from
all the possible trajectories in the environment. If we learn
too much from them we will overfit to a suboptimal strategy,
or suffer catastrophic forgetting.

We need some regularization mechanism!

- 31 -

Trust Region
Policy
Optimization
(TRPO)

𝛻𝜃𝐽 𝜃 =෍

𝑡

𝐴 𝑠𝑡 , 𝑎𝑡, 𝜋 𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 → max
𝜃

𝔼𝑡 𝐴 𝑠𝑡 , 𝑎𝑡, 𝜋 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

To avoid learning too much, we introduce a penalty in the form of
Kullback-Leibler divergence

max
𝜃

𝔼𝑡 𝐴 𝑠𝑡 , 𝑎𝑡, 𝜋
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
− 𝛽𝐾𝐿[𝜋𝜃𝑜𝑙𝑑 ⋅ 𝑠𝑡 , 𝜋𝜃 ⋅ 𝑠𝑡]

with 𝜋𝜃𝑜𝑙𝑑 the previous version of the policy, and 𝛽 a regularization
parameter that controls the strength of the penalty.

We can allow several training passes over the
sampled data if we make sure the policy 𝜋𝜃 doesn’t
change too much. First, note that the gradient that
we use in A2C (or A3C) can be rephramed as the
optimization problem

- 32 -

TRPO
intuition

A2C / A3C

𝛻𝜃J(𝜃)

𝜃

𝜃′

TRPO

𝜃

𝜃′′′

𝛻𝜃J(𝜃)

𝛻𝜃J(𝜃′)

𝛻𝜃J(𝜃′′)

Many steps per sample, higher sample efficiency!

𝛽

But choosing an appropriate 𝛽 value is not easy…

- 33 -

Evolution of
Policy
Gradients
algorithms

Policy
Gradients

Actor-
Critic

Advantage
Actor-
Critic

Asynchronous
Advantage
Actor-Critic

Trust Region
Policy

Optimization

Proximal
Policy

Optimization

IMPALA

Asynchronous
Proximal

Policy
Optimization

- 34 -

Proximal
Policy
Optimization
(PPO)

Let us define the ratio of probabilities 𝑅𝑡 𝜃 =
𝜋𝜃 𝑎𝑡 𝑠𝑡

𝜋𝜃𝑜𝑙𝑑 𝑎𝑡 𝑠𝑡
.

The objective is changed to look as

max
𝜃

𝔼𝑡 min 𝐴 𝑠𝑡, 𝑎𝑡 , 𝜋 𝑅𝑡(𝜃), 𝐴 𝑠𝑡 , 𝑎𝑡 , 𝜋 𝑐𝑙𝑖𝑝(𝑅𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)

this objective imposes a pessimistic bound: we can optimize 𝜃
freely, but we ignore any advantage obtained after modifying
the probability of an action by a factor smaller than 1 − 𝜖 or
larger than 1 + 𝜖.

Schulman et al – Proximal Policy
Optimization Algorithms

PPO is the algorithm of choice at OpenAI. It is
similar to TRPO but easier to configure.

- 35 -

Evolution of
Policy
Gradients
algorithms

Policy
Gradients

Actor-
Critic

Advantage
Actor-
Critic

Asynchronous
Advantage
Actor-Critic

Trust Region
Policy

Optimization

Proximal
Policy

Optimization

IMPALA

Asynchronous
Proximal

Policy
Optimization

- 36 -

OpenAI – How to train
your OpenAI Five

https://openai.com/blog/how-to-train-your-openai-five/

- 37 -

Some home-
made results
Joint work by

Rubén GarcíaAlba Segurado

Juan Montesino

Ainhoa Goñi

Álvaro Barbero Jorge López

- 38 -

Data
processing

Reference code: https://github.com/albarji/deeprl-snes/

Rescale to 84x84
Grayscale

✘ ✘ ✘ Keep 1 out of 4
frames

State: stack of last 4 frames

https://github.com/albarji/deeprl-snes/

- 39 -

Neural
network

Espeholt et al - IMPALA: Scalable Distributed Deep-RL with Importance WeightedActor-Learner Architectures

Small

Large

- 40 -

RL on simpler videogames

- 41 -

- 42 -

Reinforcement
Learning

in Gradius 3

Reward design:

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑠𝑐𝑜𝑟𝑒 + 𝑝𝑖𝑐𝑘 𝑝𝑜𝑤𝑒𝑟𝑢𝑝 + 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑜𝑠𝑠 𝑙𝑖𝑓𝑒 − 𝑑𝑒𝑎𝑡ℎ

Learning architecture:

- Environment definition

- Reward design

- Gym Retro: extensión to

emulate retro video games

- Cluster computing library

- Specialized in reinforcement learning

- Includes PPO, IMPALA and many others

- 1 GPU + 32-200 CPUs cluster

- 43 -

- 44 -

Hemos supuesto que:Experiencia
BiciMAD

- Hay 6 camiones en funcionamiento 24 horas al día

- En cada camión se pueden cargar hasta 22 bicicletas

- Estos camiones pueden visitar, como mucho, 2 estaciones
en cada hora

- Cada camión tiene un radio de acción de 3,5 km

Foto obtenida en: europapress.es

- 45 -

Resolución
del problema

Open Data
EMT Madrid

Frecuencia
horaria

Machine Learning
Predictor

Optimización

Planificador

Foto obtenida en: europapress.es

Esquema de la solución:

- 46 -

Los
resultados (I)

Reales del
1 de septiembre al
30 de noviembre de 2018

Con nuestra primera solución y 6

camiones del 1 de septiembre al

30 de noviembre de 2018

Ocupaciones

- 47 -

Demostración

Foto obtenida en: perfil de Twitter Bicimad

Elementos gráficos de apoyo obtenidos en:

You can check more articles of
innovation on our Blog:
www.iic.uam.es/blog/

C/ Francisco Tomás y Valiente, nº 11,
EPS, Edificio B, 5ª planta

UAM Cantoblanco. 28049 Madrid
Tel.: (+34) 91 497 2323

Álvaro Barbero Jiménez

Chief Data Scientist en el Instituto de Ingeniería del Conocimiento

@albarjip

albarji.deviantart.com

Alvaro Barbero

https://github.com/albarji
Graphic elements of support obtained in :

https://es.linkedin.com/in/%C3%A1lvaro-barbero-jim%C3%A9nez-6056005
https://github.com/albarji

