Actualidad

9º Seminario: Aplicaciones de los algoritmos para la clasificación de series temporales

El 6 de julio de 2012, a las 12:00 horas en el salón de grados de la Escuela Politécnica Superior de la Universidad Autónoma de Madrid, tuvo lugar el seminario bajo el título Aplicaciones de los algoritmos para la clasificación de series temporales. El seminario en esta ocasión será impartido por D. Ramón Huerta de la Universidad de California en San Diego.

Resumen: Hoy en día existen multitud de problemas donde se disponen de secuencias multidimensionales con estructura temporal. El problema consiste en determinar la causa, el origen o la fuente de esas fluctuaciones temporales que se manifiestan en sensores multidimensionales. Típicamente las series temporales se descomponen en un conjunto de características o “features” que posteriormente se utilizan como entradas de algoritmos de clasificación clásicos, como pueden ser redes neuronales artificiales o máquinas de soporte vectorial.

Si bien estos algoritmos son capaces de extraer unos niveles más que aceptables de rendimiento en la identificación y discriminación de señales, es obvio que se pueden mejorar los resultados si se tiene en consideración que las series temporales tienen una estructura temporal. ¿Qué quiere decir que tengan estructura temporal? Que dos medidas próximas en el tiempo tienen alta correlación entre ellas. Curiosamente esta propiedad tan básica de las series temporales ha sido ignorada en los campos de Inteligencia Artificial y Estadística por dos suposiciones dominantes: la estacionalidad de la señal y, en menor medida, la independencia estadística de las medidas.

El objetivo de este seminario fue explicar diferentes metodologías actuales que se utilizan para la clasificación y discriminación de series temporales, y en concreto mostrar cómo se pueden utilizar sistemas dinámicos junto con las máquinas de vectores soporte para la resolución de problemas de clasificación de series temporales.